Junedayday Blog

六月天天的个人博客

0%

【K8s源码品读】009:Phase 1 - kube-scheduler - Informer监听资源变化

聚焦目标

了解Informer是如何从kube-apiserver监听资源变化的情况

目录

  1. 什么是Informer
  2. Shared Informer的实现
  3. PodInformer的背后的实现
  4. 聚焦Reflect结构
  5. 本节小节

Informer

什么是Informer?这一节,我将先抛开代码,重点讲一下这个Informer,因为它是理解k8s运行机制的核心概念。

我没有在官方文档中找到Informer的明确定义,中文直译为通知器。从这个链接中,我们可以看到一个自定义资源的的处理流程。

我简单概况下,Informer的核心功能是 获取并监听(ListAndWatch)对应资源的增删改,触发相应的事件操作(ResourceEventHandler)

Shared Informer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/*
client 是连接到 kube-apiserver 的客户端。
我们要理解k8s的设计:
1. etcd是核心的数据存储,对资源的修改会进行持久化
2. 只有kube-apiserver可以访问etcd
所以,kube-scheduler要了解资源的变化情况,只能通过kube-apiserver
*/

// 定义了 Shared Informer,其中这个client是用来连接kube-apiserver的
c.InformerFactory = informers.NewSharedInformerFactory(client, 0)

// 这里解答了为什么叫shared:一个资源会对应多个Informer,会导致效率低下,所以让一个资源对应一个sharedInformer,而一个sharedInformer内部自己维护多个Informer
type sharedInformerFactory struct {
client kubernetes.Interface
namespace string
tweakListOptions internalinterfaces.TweakListOptionsFunc
lock sync.Mutex
defaultResync time.Duration
customResync map[reflect.Type]time.Duration
// 这个map就是维护多个Informer的关键实现
informers map[reflect.Type]cache.SharedIndexInformer
startedInformers map[reflect.Type]bool
}

// 运行函数
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
f.lock.Lock()
defer f.lock.Unlock()
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
// goroutine异步处理
go informer.Run(stopCh)
// 标记为已经运行,这样即使下次Start也不会重复运行
f.startedInformers[informerType] = true
}
}
}

// 查找对应的informer
func (f *sharedInformerFactory) InformerFor(obj runtime.Object, newFunc internalinterfaces.NewInformerFunc) cache.SharedIndexInformer {
f.lock.Lock()
defer f.lock.Unlock()
// 找到就直接返回
informerType := reflect.TypeOf(obj)
informer, exists := f.informers[informerType]
if exists {
return informer
}

resyncPeriod, exists := f.customResync[informerType]
if !exists {
resyncPeriod = f.defaultResync
}
// 没找到就会新建
informer = newFunc(f.client, resyncPeriod)
f.informers[informerType] = informer
return informer
}

// SharedInformerFactory 是 sharedInformerFactory 的接口定义
type SharedInformerFactory interface {
// 我们这一阶段关注的Pod的Informer,属于核心资源
Core() core.Interface
}

// core.Interface的定义
type Interface interface {
// V1 provides access to shared informers for resources in V1.
V1() v1.Interface
}

// v1.Interface 的定义
type Interface interface {
// Pod的定义
Pods() PodInformer
}

// PodInformer 是对应的接口
type PodInformer interface {
Informer() cache.SharedIndexInformer
Lister() v1.PodLister
}
// podInformer 是具体的实现
type podInformer struct {
factory internalinterfaces.SharedInformerFactory
tweakListOptions internalinterfaces.TweakListOptionsFunc
namespace string
}

// 最后,我们可以看到podInformer调用了InformerFor函数进行了添加
func (f *podInformer) Informer() cache.SharedIndexInformer {
return f.factory.InformerFor(&corev1.Pod{}, f.defaultInformer)
}

PodInformer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
// 实例化PodInformer,把对应的List/Watch操作方法传入到实例化函数,生成统一的SharedIndexInformer接口
func NewFilteredPodInformer() cache.SharedIndexInformer {
return cache.NewSharedIndexInformer(
// List和Watch实现从PodInterface里面查询
&cache.ListWatch{
ListFunc: func(options metav1.ListOptions) (runtime.Object, error) {
if tweakListOptions != nil {
tweakListOptions(&options)
}
return client.CoreV1().Pods(namespace).List(context.TODO(), options)
},
WatchFunc: func(options metav1.ListOptions) (watch.Interface, error) {
if tweakListOptions != nil {
tweakListOptions(&options)
}
return client.CoreV1().Pods(namespace).Watch(context.TODO(), options)
},
},
&corev1.Pod{},
resyncPeriod,
indexers,
)
}

// 我们先看看Pod基本的List和Watch是怎么定义的
// Pod基本的增删改查等操作
type PodInterface interface {
List(ctx context.Context, opts metav1.ListOptions) (*v1.PodList, error)
Watch(ctx context.Context, opts metav1.ListOptions) (watch.Interface, error)
...
}
// pods 是PodInterface的实现
type pods struct {
client rest.Interface
ns string
}

// List 和 Watch 是依赖客户端,也就是从kube-apiserver中查询的
func (c *pods) List(ctx context.Context, opts metav1.ListOptions) (result *v1.PodList, err error) {
err = c.client.Get().
Namespace(c.ns).
Resource("pods").
VersionedParams(&opts, scheme.ParameterCodec).
Timeout(timeout).
Do(ctx).
Into(result)
return
}
func (c *pods) Watch(ctx context.Context, opts metav1.ListOptions) (watch.Interface, error) {
return c.client.Get().
Namespace(c.ns).
Resource("pods").
VersionedParams(&opts, scheme.ParameterCodec).
Timeout(timeout).
Watch(ctx)
}

// 在上面,我们看到了异步运行Informer的代码 go informer.Run(stopCh),我们看看是怎么run的
func (s *sharedIndexInformer) Run(stopCh <-chan struct{}) {
// 这里有个 DeltaFIFO 的对象,
fifo := NewDeltaFIFOWithOptions(DeltaFIFOOptions{
KnownObjects: s.indexer,
EmitDeltaTypeReplaced: true,
})
// 传入这个fifo到cfg
cfg := &Config{
Queue: fifo,
...
}
// 新建controller
func() {
s.startedLock.Lock()
defer s.startedLock.Unlock()

s.controller = New(cfg)
s.controller.(*controller).clock = s.clock
s.started = true
}()
// 运行controller
s.controller.Run(stopCh)
}

// Controller的运行
func (c *controller) Run(stopCh <-chan struct{}) {
//
r := NewReflector(
c.config.ListerWatcher,
c.config.ObjectType,
c.config.Queue,
c.config.FullResyncPeriod,
)
r.ShouldResync = c.config.ShouldResync
r.clock = c.clock
if c.config.WatchErrorHandler != nil {
r.watchErrorHandler = c.config.WatchErrorHandler
}

c.reflectorMutex.Lock()
c.reflector = r
c.reflectorMutex.Unlock()

var wg wait.Group
// 生产,往Queue里放数据
wg.StartWithChannel(stopCh, r.Run)
// 消费,从Queue消费数据
wait.Until(c.processLoop, time.Second, stopCh)
wg.Wait()
}

Reflect

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// 我们再回头看看这个Reflect结构
r := NewReflector(
// ListerWatcher 我们已经有了解,就是通过client监听kube-apiserver暴露出来的Resource
c.config.ListerWatcher,
c.config.ObjectType,
// Queue 是我们前文看到的一个 DeltaFIFOQueue,认为这是一个先进先出的队列
c.config.Queue,
c.config.FullResyncPeriod,
)

func (r *Reflector) Run(stopCh <-chan struct{}) {
klog.V(2).Infof("Starting reflector %s (%s) from %s", r.expectedTypeName, r.resyncPeriod, r.name)
wait.BackoffUntil(func() {
// 调用了ListAndWatch
if err := r.ListAndWatch(stopCh); err != nil {
r.watchErrorHandler(r, err)
}
}, r.backoffManager, true, stopCh)
klog.V(2).Infof("Stopping reflector %s (%s) from %s", r.expectedTypeName, r.resyncPeriod, r.name)
}

func (r *Reflector) ListAndWatch(stopCh <-chan struct{}) error {
// watchHandler顾名思义,就是Watch到对应的事件,调用对应的Handler
if err := r.watchHandler(start, w, &resourceVersion, resyncerrc, stopCh); err != nil {
if err != errorStopRequested {
switch {
case isExpiredError(err):
klog.V(4).Infof("%s: watch of %v closed with: %v", r.name, r.expectedTypeName, err)
default:
klog.Warningf("%s: watch of %v ended with: %v", r.name, r.expectedTypeName, err)
}
}
return nil
}
}
}

func (r *Reflector) watchHandler() error {
loop:
for {
// 一个经典的GO语言select监听多channel的模式
select {
// 整体的step channel
case <-stopCh:
return errorStopRequested
// 错误相关的error channel
case err := <-errc:
return err
// 接收事件event的channel
case event, ok := <-w.ResultChan():
// channel被关闭,退出loop
if !ok {
break loop
}

// 一系列的资源验证代码跳过

switch event.Type {
// 增删改三种Event,分别对应到去store,即DeltaFIFO中,操作object
case watch.Added:
err := r.store.Add(event.Object)
case watch.Modified:
err := r.store.Update(event.Object)
case watch.Deleted:
err := r.store.Delete(event.Object)
case watch.Bookmark:
default:
utilruntime.HandleError(fmt.Errorf("%s: unable to understand watch event %#v", r.name, event))
}
}
}
return nil
}

Summary

  1. Informer 依赖于 Reflector 模块,它有个组件为 xxxInformer,如 podInformer
  2. 具体资源的 Informer 包含了一个连接到kube-apiserverclient,通过ListWatch接口查询资源变更情况
  3. 检测到资源发生变化后,通过Controller 将数据放入队列DeltaFIFOQueue里,生产阶段完成

Github: https://github.com/Junedayday/code_reading

Blog: http://junes.tech/

Bilibili:https://space.bilibili.com/293775192

公众号:golangcoding